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ABSTRACT. Collision rate constants and third-body collision efficiencies are calculated for more 

than 300 alkanes, alcohols, and hydroperoxides, for the bath gases He, Ar, H2, and N2, and from 

300 to 2000 K. The data set includes highly branched species and species with as many as 16 

nonhydrogen atoms N, and it is analyzed to develop strategies for estimating collision properties 

more generally. Simple analytic formulas describing the Lennard–Jones collision parameters s 

and e are obtained for each of the three classes of systems as a function of N. Trends in the collision 

efficiency range parameter a = <DEd> are more complicated, and a method is developed and 

validated for estimating a based on the numbers and types of internal rotors and oxygen-containing 

groups. Specifically, the approach maps the expected value of a for a branched alkane, alcohol, or 

hydroperoxide onto those for the corresponding normal (linear) series via an effective number of 

nonhydrogen atoms Neff. The prescription for Neff is based on counting internal rotor types and is 

shown to be insensitive to temperature and fairly insensitive to the identity of the bath gas. 

Together, these strategies allow for the ready estimation of the collision parameters s, e, and a so 

long as results for the associated linear series are available.  
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1. INTRODUCTION 

Detailed chemical kinetic models are comprised of (nowadays, often quite extensive) 

parameter databases describing elementary reaction rates, thermochemistry, and transport [1–9]. 

The role of a priori theory as an independent source of information for populating these databases 

and for improving the models they reflect continues to increase [10–13].  

Here, we consider a priori theoretical approaches for computing collision rate constants 

and efficiencies relevant to the prediction of transport properties [14–16] and pressure dependence 

in elementary kinetics [17–20]. These phenomena are controlled by so-called “third body” bath 

gas collisions, and we recently used trajectory-based collision parameters to compute diffusion 

coefficients [21] and pressure dependent kinetics [22] with accuracies comparable to those from 

experiment. Our predictive work benefitted from a long history of combustion-relevant trajectory 

studies of collisional energy transfer (see for example [23–32] and the recent review from Lendvay 

[33]) as well as quantum mechanical scattering predictions of transport properties [34–37], and it 

is similar to ongoing work from several groups (for example [38–41]). 

Collisional activation is the dynamical bottleneck in the low-pressure limit of a 

unimolecular reaction, A (+M) = B + C (+M), where the reaction rate k0,M[A][M] depends linearly 

on pressure. Chemical kinetics tabulations sometimes include k0,M for a reference bath gas (e.g., 

Ar) along with relative collision efficiencies (expressed as ratios of k0,M) for other baths, but for 

many reactions this information is not available. More generally and despite some systematic 

experimental studies (for example [42–54]), it remains difficult to anticipate how collision 

efficiencies vary with the temperature and identity of the bath gas M as well as the size and 

chemical structure of the unimolecular reactant A. 

We do know that the rate constants k0,M can vary significantly for different bath gases M 

and that their relative efficiencies are temperature dependent. As examples we highlight a few 
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experimental studies from Michael and co-workers. In a series of papers from the 1970s [42–44], 

k0,M was shown to vary by as much as factor of four even among the so-called “weak” colliders 

(e.g., M = He, Ar, Kr, H2, N2, O2), while more recently [50] the important combustion reaction H 

+ O2 (+M) was shown to be ~25x faster for the strong collider M = H2O than for M = Ar. 

The goal of the present work is to use trajectory-based predictions of collisional energy 

transfer to develop rules for describing how the collision parameters that control k0,M depend on 

the size, composition, and structure of A. Specifically, we consider a total of 307 unimolecular 

reactants A with as many as 16 nonhydrogen (“heavy”) atoms N, including alcohols, 

hydroperoxides, and highly branched hydrocarbons, and the baths M = He, Ar, H2, and N2. 

The present work considerably extends our previous study [55] where 38 hydrocarbons 

with N = 1 to 8 were studied for seven baths, M = He, Ne, Ar, Kr, H2, N2, and O2. Collision 

parameters were found to be quite similar for M = Ar and Kr and for N2 and O2, and we therefore 

exclude Kr and O2 from consideration here along with Ne, which is less commonly needed in 

combustion database compilations. Important baths like M = H2O and CO2 are also not considered, 

as these baths require complex strategies for accurately representing their A + M interaction 

potentials that complicate the consideration of large numbers of systems [56]. 

The large data set generated here is analyzed to develop and validate simple expressions 

for estimating the Lennard–Jones collision parameters s and e as well as a commonly used 

measure of the collision efficiency a = <DEd>, which is the average energy transferred in 

deactivating collisions. We show that a can be reliably estimated using an “effective” number of 

nonhydrogen atoms Neff, which is determined simply by counting the numbers and types of internal 

rotors (e.g., torsions) in A. 
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This paper is organized as follows. In Sec. 2, we briefly summarize the strategies used here 

for potential energy surface construction, for computing the Lennard–Jones parameters s and e, 

and for preparing and analyzing the trajectories used to compute a. We also outline a general 

automation strategy that enabled the more than 11 million trajectories that were needed for this 

work. Section 3 includes a brief test of our choice of molecular mechanics force field for describing 

A. Then, the systematic parameterization of Neff is described using data for 1000 K and M = Ar. 

The resulting prescriptions for Neff are subsequently tested and validated using the full data set, 

including data obtained at 300 and 2000 K and for M = He, H2, and N2. Section 4 is a conclusion. 

 

2. THEORY 

 Potential energy surfaces. Potential energy surfaces (PESs) describing A + M collisions 

are a prerequisite for predicting collision parameters, and we have previously used a simple 

transferable “separable and pairwise” approach for constructing them [57]. Similar approaches 

have a long history of use in trajectory studies of collisional energy transfer (for example [58–61]). 

Briefly, pairwise Buckingham (exp/6) interactions were parameterized against calculated ab initio 

interaction energies for a reference system (CH4 + M). The resulting interaction parameters were 

assumed to be transferable to larger CxHy + M systems, and the good accuracy of this assumption 

was demonstrated [55,56]. This approach greatly simplifies the consideration of large numbers of 

systems, as required here. 

 For CxHy + He, Ar, H2, and N2 and CxH2x+1OH + He and Ar, we used our previously 

developed exp/6 parametrizations [56,57]. New exp/6 PESs were generated for this work to 

describe CxH2x+1OOH + He and Ar using the same electronic structure theory, sampling, and fitting 

strategies that were used for alcohols in Ref. [56]. The new CxH2x+1OOH + He and Ar 
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parameterizations and comparisons of the ab initio and fitted energies are included as supporting 

information. As noted in Ref. [56], the separable and pairwise exp/6 approach is not accurate when 

the interaction potential is too anisotropic, such as for alcohols and M = N2. Therefore, diatomic 

baths were not considered here for any oxygenated species A. 

 In the present work, the species A are common organic molecules, and A + M collisions 

are always nonreactive. We therefore used molecular mechanics force fields for describing the 

intramolecular PES of A. Specifically, the Tinker software package [62] was used, and we tested 

three related force fields distributed with it: MM3 [63], AMBER [64], and OPLS [65]. A tight 

binding (TB) model for hydrocarbons was also tested [66]. As shown below, we find only small 

differences in the results obtained using the different force fields, and unless otherwise indicated 

the present results were obtained using MM3. 

The Lennard–Jones parameters s and e. As described in a recent review [15], transport 

databases typically consist of pairs of Lennard–Jones parameters (the well depth e and collision 

diameter s) describing self-collisions (i.e., A + A collisions) for every species of interest. 

Combining rules are employed to generate the required binary (i.e., A + M) collision parameters 

(typically via geometric and arithmetic averages for e and s, respectively), and these are converted 

to transport properties and collision rates via isotropic 12/6 Lennard–Jones formulas.  

In addition to errors associated with the use of simple combining rules, the 12/6 Lennard–

Jones model ignores anisotropy in the intermolecular PES, the internal coordinates of the colliders, 

and the softness of the repulsive wall. While these errors can be important [21], particularly the 

error associated with the treatment of the repulsive wall [16,36], incorporating more detailed 

transport models into existing kinetics codes and databases remains rare. We therefore limit 
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attention to the prediction of the collision parameters e and s, despite the simplifications they 

represent.  

 We computed the collision parameters s and e using the “one-dimensional minimizations” 

method [67] and the distributed code 1DMIN [68]. In this approach, the inner turning point at the 

energy of the asymptote and the minimum energy of the interaction potential at several fixed 

orientations are averaged to determine s and e, respectively. Aside from special cases like A = H 

and H2, which are not considered here, the use of these effective isotropic 12/6 Lennard–Jones 

parameters is not likely a significant source of error for transport and collision rate calculations in 

combustion, as previously quantified via comparisons with “exact” classical trajectory results [21] 

and with tabulated values [67]. 

The collision efficiency range parameter a. Detailed models for the collisional energy 

transfer function [22,38] have been shown to enable a priori kinetics predictions with errors of just 

25% [22,69], whereas simpler models that incorporate fewer physical details, such as the “single-

exponential-down” model [17,45] that is often used in energy-resolved master equation 

calculations [70–72], have a priori accuracies of closer to a factor of two [69,73–75]. Again, in an 

effort to be most directly useful for constructing extensive chemical kinetics tabulations, we 

restrict attention to models where collision outcomes are controlled by the single parameter a = 

<DEd>, which is the average energy transferred in deactivating collisions. 

 The computation of a = <DEd> using our classical trajectory code DiNT [76] involves 

several steps, and our approach [22,55,67] is similar to approaches used by other groups 

[38-41,77]. Briefly, the unimolecular reactant A is prepared with a fixed class-dependent initial 

total energy E' representative of typical dissociation energies (here, 95 kcal/mol for alkanes, 90 

kcal/mol for alcohols, and 45 kcal/mol for hydroperoxides) and an initial rotational state J' selected 
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from an independent thermal distribution at the temperature T of interest. As in Ref. [76], 

vibrationally averaged rotational constants, <B> and <A>, are used to define the thermal 

populations from which J' is selected. For long linear systems (e.g., n-hexadecane), this choice 

results in significantly different computed values of a (by up to 50%) relative to the less accurate 

approach of using the equilibrium rotational constants, Be and Ae. For systems with only a few 

heavy atoms <B> » Be, and the two approaches give similar results.  

 Some additional care must be taken when sampling the internal coordinates of the larger 

species, as well. We tested several strategies suitable for automation, and, with one exception, we 

found that our results were insensitive (within our sampling statistics) to the number of different 

initial low-energy conformers used to initiate the sampling trajectories (we tested using from 1 to 

8 conformers) and to the length of the sampling trajectories (which we varied from 25 to 250 ps). 

The one exception we found is what might be considered the simplest approach. When we used 

only the linear geometry as the initial structure for the sampling trajectories along with short 

sampling times, we obtained fairly small (<30%) but statistically significant differences in a 

relative to the more robust strategies. 

 The relative collision parameters and any internal coordinates of the bath gas are selected 

from thermal distributions using standard approaches for bimolecular collisions [78]. The 

trajectories are propagated classically until A and M are separated enough to unambiguously 

determine the final state (E,J) of A, from which a variety of energy transfer properties can be 

computed including a = <DEd>. As has been frequently discussed (for example [22,23,33,38,77]), 

trajectory calculations (and experiments) necessarily describe per-time energy transfer averages. 

One must choose a reference collision rate constant Z to convert this information to the per-
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collision averages, like a, that are often of interest. Here we use Z computed using the Lennard–

Jones parameters obtained above.  

 Once the outcomes of an appropriately prepared trajectory ensemble are computed, one 

can generate any number of different energy- and angular–momentum-transfer averages as 

required for parameterizing more detailed higher-accuracy models for energy transfer [22,69], but 

this is not pursued here. Instead we analyze trends in the single moment a computed for a large 

number of systems. For each A + M and temperature T, 14400 trajectories were computed, which 

for our choices of numerical parameters resulted in 2-sigma Monte Carlo statistical uncertainties 

in a of ~5%. 

 Throughout this work we report trends in Zn1a instead of a, where n1 is the number density 

of the bath gas at 1 Torr and the temperature of interest. The product Za describes energy 

transferred per time and, neglecting angular momentum, is equal to the “deactivating” moment of 

the collisional energy transfer rate constant that is sometimes written R(E,E'), as discussed 

elsewhere [18,27]. We choose to multiply Za by n1 to give somewhat more manageable units 

(here, cm–1/s). This choice of pressure is of no consequence as choosing pressures other than 1 

Torr would simply scale all of the results equally. Trends in Zn1a are often similar to trends in the 

per-collision quantity a, but the former avoids the arbitrariness associated with the particular 

choice of Z.  

 Data set. A total of 307 unimolecular reactants A with as many as sixteen heavy 

(nonhydrogen) atoms N were considered, including 141 hydrocarbons, 84 alcohols, and 82 

hydroperoxides. Results are reported for several series of related systems where N is varied for a 

fixed branching and oxygen-group functionalization motif. These series are summarized in Tables 

1 and 2, which include chemical drawings, and are described next. 
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 The hydrocarbon systems studied here are shown in Table 1. In addition to the series of 

normal alkanes from methane to hexadecane (N = 1–16), we considered eight series of singly 

branched methyl- and ethyl- substituted alkanes (e.g., the series of 3-ethylalkanes from 3-

ethylpentane, N = 7, to 3-ethyltetradecane, N = 16) and eight series of doubly branched dimethyl- 

substituted alkanes (e.g., the series of 2,2-dimethylalkanes from neopentane, N = 5, to 2,2-

dimethyltetradecane, N = 16). Four series of highly branched species were considered: a “half 

methylated” series where every other C atom in the backbone was methyl-substituted, a 

“methylated” series where every C atom in the backbone was methyl-substituted, a “dimethylated” 

series where every C atom in the backbone was dimethyl-substituted, and a series representing the 

“iso” fuels isooctane, isododecane, and isohexadecane. We considered three series with alkane 

rings, including cyclopentane and cyclohexane with alkane chain substitutions of various lengths 

as well as a “polycyclo-” series consisting of cyclohexane, decalin, and the three-ring continuation 

of the series. Finally, we also considered the aromatic ring versions of the alkane ring series, where 

we note that the cyclopentadienyl- series consists of radicals, unlike all of the other systems 

considered here. 

 The oxygenated systems studied here are summarized in Table 2. In addition to the normal 

alcohol and hydroperoxide series, we considered several series of linear and branched alkanes 

substituted with one or two hydroxy or peroxy groups, as detailed in Table 2. 

 Automation. Collisional energy transfer parameters for all 307 systems in Tables 1 and 2 

were computed at 1000 K and for M = Ar. Additional calculations at T = 300 and 2000 K and for 

M = He, H2, and N2 were carried out for a subset of these systems. In total, 788 A + M and T 

combinations were considered, requiring a total of more than 11 million trajectories. Managing 

such a large number of computations was aided by the following strategy.  
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 The computation of s, e, and a was automated using three levels of codes and scripting: 

 (1) Chemical physics codes: At the lowest level, the chemical physics codes 1DMIN and 

DiNT read text input files and produce text output files, with the goal of keeping each step at this 

level as elementary as possible. 1DMIN is inherently simple, for example, requiring only the 

geometry of A, the identity of M, and the specification of the interaction potential as inputs. The 

output of 1DMIN is s and e. DiNT, on the other hand, has multiple uses, including geometry 

optimization, initial condition sampling, and trajectory simulations. These steps were carried out 

independently via separate instances of DiNT, with each step communicating via text inputs and 

producing different text outputs, as managed at the next level.  

 (2) Scripting: The following sequence of elementary chemical physics steps required to 

generate s, e, and a for a single system A + M and temperature T was scripted at the second level. 

The procedure started with a guessed geometry for A, the identity of the bath gas M, a potential 

energy surface for A + M, and the temperature T. (a) DiNT first optimized the structure of A. (b) 

1DMIN read the optimized structure and computed s and e. (c) Independently, DiNT read the 

optimized structure and used it to launch a small number of long-lived trajectories of the isolated 

molecule A (i.e., without M present) designed to sample the internal coordinates and momenta of 

A microcanonically and subject to class-specific values of the initial energy E'. (d) Vibrationally-

averaged rotational constants <B> and <A> were computed from the geometries generated in step 

c. (e) The results from steps a, c, and d were read and used by DiNT to set up and run an A + M 

collisional energy transfer ensemble. (f) The average energy transferred in deactivating collisions 

for the ensemble in step e was computed and renormalized to the collision rate Z generated from 

s and e computed in step b to produce a. 
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 This stepwise scripting approach has the following useful features. First, intermediate 

information can be reused; for example, the internal coordinates for A sampled in step c can be 

reused for other bath gases. Second, the script can be readily restarted and naturally avoids 

repeating calculations while avoiding complex bookkeeping of the status of the various steps. 

Instead, each step has a set of input and output files associated with it. The script checks to see if 

the output file already exists, and, if so, the step is skipped. If the output file does not exist, the 

script checks for the required input files (which themselves may be output files from other steps). 

If the required input files do exist, the job is launched. If not, the step is skipped, presumably 

because steps involved in generating these files are still running or are yet to be run. The script can 

be rerun until all input and output files are produced and all steps are completed. Jobs managed in 

this way are easily parallelized despite the complex and heterogenous workflow, particularly when 

a computational cluster with a queuing system is used. 

 (3) Batch processing: At the highest level, simple and trivially parallelized batch scripts 

were used to loop through desired values of A, M, and T. At this level, one can also implement 

rules for specifying numerical parameters needed for the calculations, such as the maximum 

impact parameter, bmax, or the center of mass distance used to terminate the trajectory, Rf, which 

may be system dependent. Here, for example, we generously set bmax = 8 + N/2 Å and Rf = bmax + 

3 Å. Such rules avoid the need for human intervention for each choice of A and allow for the rapid 

consideration of large numbers of systems. These scripts also collect and tabulate the desired 

information. 

 Trends. The major goal of the present work is to provide simple rules for estimating the 

collision parameters s, e, and a by studying their dependence on N and the structure of A. These 

rules are described next. As noted previously [55] and as demonstrated again in Sec. 3, the 
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Lennard–Jones parameters s and e are fairly insensitive to branching and may be well represented 

for each class of reactants and bath gas as a power law in the number of nonhydrogen (“heavy”) 

atoms N. Power law coefficients and exponents are newly determined here for alcohols and 

hydroperoxides, and we update our earlier determinations for hydrocarbons [55] to perform better 

for large N. 

 To estimate a, we define an effective number of heavy atoms Neff that is based on the 

number and type of internal rotors in A. (We are using “rotor” here to mean any bonded pair of 

heavy atoms, including torsions as well as the constrained rotors appearing in rings.) If both central 

atoms are C atoms, we label the rotor based on the coordination (p, s, t, and q for primary, 

secondary, tertiary, or quaternary) of the two central C atoms. For example, propane has two ps 

rotors, and butane has two ps rotors and one ss rotor. Rotors where one or both of the central atoms 

is an O atom are counted separately as NCO or NOO. These counts are used to define Neff via 

              Neff = 1 + cpp|ps|ss (Npp + Nps + Nss)           (1) 
     + cpt|st (Npt + Nst) 
     + cpq|sq (Npq + Nsq) 
     + ctt|tq|qq (Ntt + Ntq + Nqq) 
     + cCO|OO (NCO + NOO)  
     + css,ring Nss,ring – Nrings , 

where the coefficients cx scale contributions from the different rotor types, and we have grouped 

similar rotors together. We distinguish ss rotors appearing in rings from those that do not, and Nrings 

counts rings. When cx = 1 for all x, Neff is equal to the number of heavy atoms N. By choosing cx 

< 1 for some terms, we show below that Neff maps the computed values of a for branched and 

oxygenated species onto those for the corresponding normal (linear) series.  

 The coefficients in Eq. (1) may be systematically determined by considering subsets of 

systems that isolate the dependence of a on certain rotor types. This procedure will be described 

in Sec. 3, where we find cpp|ps|ss = 1, cpt|st = 23, cpq|sq = 13, ctt|tq|qq = 0, cCO|OO = 13, and css,ring = 12. Using 
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these parameters, a may be estimated for an unknown system as follows, so long as results for the 

corresponding normal (linear) series of a are known. We label the linear reference series α!. One 

first counts rotor types and evaluates Neff via Eq. (1), which may be a non-integer number. One 

may be tempted to estimate a as α!(Neff) by interpolating nearby values of α!, which of course is 

known only at integer values of N. Such a procedure would not properly account for changes in 

the collision rate with N, however. Instead, one should interpolate the product Zα!!! for the reference 

series to determine its value at Neff and then divide by Z for the system size of interest N, i.e., 

  a » Zα!!!(Neff)/Z(N). (2) 

An example of this procedure is given at the end of Sec. 3, and a spreadsheet useful for evaluating 

Eq. (2) is given as supporting information. The supporting information also includes results for 

every system studied here, including all of the useful data appearing in the figures as well as results 

for temperatures and bath gases mentioned but not presented. 

 

3. RESULTS AND DISCUSSION 

 Collision rate constants. Lennard–Jones parameters s and e were computed for the large 

set of A + M systems discussed above. Figure 1 shows the results of these calculations for M = Ar 

converted to Lennard-Jones collision rate constants Z at 1000 K. For a given value of N, the scatter 

in Z is small enough (typically less than 5%) to neglect for many applications. We therefore express 

s and e as simple functions of N. The results from Fig. 1 for M = Ar are well represented by the 

expressions 

 hydrocarbons (+Ar)  s(N) = 3.40 N0.18 Å e(N) = 113 N0.31 cm–1 
 alcohols (+Ar) s(N) = 3.05 N0.20 Å e(N) = 150 N0.29 cm–1 
 hydroperoxides (+Ar)  s(N) = 3.05 N0.20 Å e(N) = 110 N0.39 cm–1 
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where we have improved our previous recommendation for hydrocarbons [55] to better represent 

N > 8. The lines in Fig. 1 show the values of Z computed using these expressions. This procedure 

was repeated for M = He, H2, and N2, and we obtained 

 hydrocarbons (+He)  s(N) = 3.33 N0.17 Å e(N) = 21.3 N0.31 cm–1 
 hydrocarbons (+H2)  s(N) = 3.15 N0.18 Å e(N) = 75.0 N0.30 cm–1 
 hydrocarbons (+N2)  s(N) = 3.68 N0.16 Å e(N) = 100. N0.25 cm–1 
 alcohols (+He) s(N) = 2.90 N0.21 Å e(N) = 22.0 N0.28 cm–1 
 hydroperoxides (+He)  s(N) = 2.90 N0.21 Å e(N) = 10.0 N0.75 cm–1 

 Tests of the intramolecular potential. Next we briefly consider the sensitivity of the 

computed values of a to the description of the intramolecular potential. The collision rate constants 

Z are independent of this choice. Figure 2 shows Zn1a computed for the series of n-alkanes in Ar 

at 1000 K using three molecular mechanics potentials (MM3, AMOEBA09, and OPLSAA) and 

one semiempirical tight binding (TB) potential. These results are seen to increase nearly linearly 

with N for small N, they begin to plateau around pentane, and are relatively independent of N for 

large N. The value of N at which this transition takes place is related to the system size at which 

the bath gas temperature equals the effective temperature of the internal energy of A. 

 Results for the three molecular mechanics potentials agree with each other within their 5% 

2-sigma statistical sampling uncertainties, whereas results for the TB potential are slightly but 

systematically lower (by 10%) for alkanes larger than hexane. The TB potential has an unphysical 

description of torsions, which likely explains this result. The relative insensitivity of collisional 

energy transfer efficiencies on the description of the intramolecular potential has been noted 

previously [28,30] and is confirmed again here in this somewhat different context. The MM3 

parameterization is used exclusively in the remainder of this work. 

 Lightly branched alkanes. Figure 3 shows Zn1a at 1000 K for the alkane series listed in 

Table 1. In Fig. 3a, results for the n-alkanes are compared with those for the series of singly and 
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doubly branched alkanes as a function of N. As in Fig. 2, the 2-sigma statistical uncertainties for 

these results are ~5%, and so we do not attempt to interpret the fine structure of any of these curves. 

Instead, we note qualitatively that the curves for the singly branched species appear shifted to the 

right by ~1 heavy atom relative to the n-alkanes, whereas the curves for the doubly branched 

species appear shifted by ~2 heavy atoms. These qualitative observations were made previously 

[55] and were the initial motivation for the design of Eq. (1). 

 The parameters in Eq. (1) were systematically determined by considering subsets of these 

data that isolated different rotor types, as marked in Table 1. We first considered the singly 

branched methyl- and ethyl- series, which feature pt and st rotor types in addition to ps and ss rotor 

types found in the n-alkane series. By setting cpp|ps|ss = 1 and optimizing the single remaining 

parameter required to describe these series, cpt|st = 23, we found that the resulting values of Neff 

closely mapped the K-methylalkane and K-ethylalkane results onto the n-alkane series. Similarly, 

by considering the 2,3-dimethylalkane series, which features tt rotors, and the K,K-dimethylalkane 

series, which features pq and sq rotors, we determined ctt|tq|qq = 0 and cpq|sq = 13, respectively. Figure 

3c shows the results of these three optimizations, where it can be clearly seen that Neff regularizes 

the results of all 16 branched series (83 systems) to closely match the n-alkane series.  

 The relationship between N and Neff may be clarified using neopentane as an example, 

which is the first entry in the 2,2-dimethylalkane series. Its computed collision parameters at 1000 

K and for M = Ar are a = 501 cm–1 and Z = 5.65 x 10–10 cm3 molecule–1 s–1, corresponding to Zn1a 

= 2.73 x 109 cm–1/s at 1 Torr Ar, as shown in Fig. 3. For this system, N = 5, and n-pentane at these 

same conditions has a similar collision rate (Z = 5.77 x 10–10 cm3 molecule–1 s–1) but a much (~60%) 

larger value of a = 786 cm–1. According to Eq. (1), however, neopentane’s four pq rotors give Neff 
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= 213, suggesting instead that neopentane should have energy transfer properties more similar to 

ethane (a = 473 cm–1) and propane (a = 612 cm–1) than n-pentane, which is in fact the case. 

 Physically, it appears reasonable to interpret cpp|ps|ss = 1 and our empirically optimized 

values of cpt|st = 23, cpq|sq = 13, and ctt|tq|qq = 0 as follows. Rotors involving only primary and secondary 

carbons (as in the pp|ps|ss group) are sufficiently unhindered so as to each contribute equally to 

energy transfer (cpp|ps|ss = 1), on average. Increasing coordination of the C atoms participating in 

the rotors leads to more hindrance and evidently less efficient promotion of energy transfer, again, 

on average. Partially hindered rotors involving just one tertiary carbon atom or just one quaternary 

carbon atom (as in the pt|st and pq|sq groups) are less efficient but remain active (cpt|st = 23 and cpq|sq 

= 13), whereas more strongly hindered rotors that involve two tertiary and/or quaternary carbon 

atoms are not active (ctt|tq|qq = 0). 

 Heavily branched alkanes. In Figs. 3b and 3d, we test the above determinations of cpp|ps|ss, 

cpt|st, and cpq|sq for several highly branched alkanes. As seen in Fig. 3b, there is considerable 

variation in this set of results, which includes strongly hindered species like those in the 

“dimethylated” and “‘iso’ fuels” series defined in Table 1. Nonetheless, the three coefficients 

determined above for the singly and doubly branched species continue to work well for heavily 

branched species, as shown in Fig. 3d. This result supports the assumption that the rotor corrections 

are additive, as in Eq. (1). 

 In both Figs. 3c and 3d, the dispersion in the results increases for large Neff, suggesting 

additional errors in the Neff approach for larger systems. The worst performance of Eq. (1) in Fig. 

3d is for the “half methylated” series, where the use of Neff offers little improvement over simply 

using N to characterize its energy transfer for the largest members of the series. These additional 

errors may indicate the need for more complicated rules, such as nonadditive rotor (i.e., multirotor) 
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corrections and/or finer classifications of rotor types. These strategies were not pursued here, and 

we simply note that the maximum deviation in the results for large Neff is 20%. We do include a 

special treatment for rings, however, as discussed next. 

 Rings. Results for three series of species with alkane rings, as described in Table 1, are also 

shown in Figs. 3b and 3d. For these systems, the performance of the coefficients determined above 

was found to be poor enough that we pursued a special correction for rotors appearing in rings. 

Such a correction may again be physically motivated by considering the hinderance of the rotors 

involved, as one expects, e.g., ss rotors appearing in rings to be more hindered than ss rotors 

appearing in linear chains. Empirically, we find that setting css,ring = 12 gives values of Neff that are 

good predictors of collisional energy transfer, as shown in Fig. 3d. Note that rings have one “extra” 

torsion relative to linear alkanes of the same size, which leads to the –Nrings term in Eq. (1) and 

thus complicates the interpretation of css,ring = 12. Still, it is notable that our empirical optimizations 

indicate that ss rotors appearing in rings are intermediate in their efficiency in promoting energy 

transfer relative to the pt|st and pq|sq groups. 

 Cyclic aromatic alkenes. The above tests could be repeated for analogous series of 

unsaturated systems and radicals, but we do not present such tests here. Instead, we briefly consider 

three series with aromatic hydrocarbon rings, again as summarized in Table 1, due to the 

importance of their energy transfer properties controlling molecular growth pathways [79,80]. As 

shown in Fig. 3d, the coefficients optimized for alkanes continue to work well for unsaturated 

rings, with no special corrections for PAHs, e.g., evidently needed. 

 Alcohols and hydroperoxides. Next we consider the 13 series of alcohols and 13 series of 

hydroperoxides described in Table 2. These series include singly and doubly branched species and 

some series with two oxygen-containing functional groups (e.g., diols). Figures 4a and 4b show 
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the computed values of Zn1a at 1000 K and 1 Torr Ar for the alcohol and hydroperoxide series, 

respectively. Relative to the alkane series, the oxygenated systems have lower values of Zn1a that 

“plateau” at smaller N, with this behavior appearing more prominently for the hydroperoxides than 

the alcohols. These trends are consistent with the lower initial internal energies for these groups 

(90 and 45 kcal/mol for the alcohols and hydroperoxides, respectively) relative the alkanes (95 

kcal/mol). 

 With the alkane coefficients in Eq. (1) fixed at the values determined above, we optimized 

the single remaining parameter cCO|OO = 13 so as to best map the results of the branched and 

multifunctional oxygenated species onto their respective normal series via Neff. The results of this 

optimization are shown in Figs. 4c and 4d, where the usefulness of using Neff instead of N to predict 

collisional energy transfer is again clearly demonstrated. The worst performance of the Neff 

approach in Fig. 4 is for the series of diperoxyalkanes, but we note that the maximum dispersion 

of the results in Fig. 4d is still less than 15%. 

 Transferability to other temperatures and other bath gases. A subset of the systems in Figs. 

3 and 4 were studied at 300 and 2000 K, again for M = Ar. Results at 2000 K are very similar to 

those for 1000 K in Figs. 3 and 4 and are not shown. Figure 5 shows the results of these tests at 

300 K for thirteen series, where the Neff model is again found to work well. We emphasize that the 

coefficients in Eq. (1) optimized using the 1000 K data were not reoptimized when constructing 

Figs. 5c and 5d. The good performance of Neff in Figs. 5c and 5d at 300 K and at 2000 K 

demonstrates that the coefficients in Eq. (1) are indeed transferable to other temperatures, which 

greatly increases the utility of the approach. 

 Transferability was tested for the baths M = He, H2 and N2, and Fig. 6 shows a subset of 

these tests for alkanes + He and N2. Results for alcohols and hydroperoxides + He and for alkanes 
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+ H2 are qualitatively similar to those for the alkanes + He and are not shown. The 

parameterizations determined above for M = Ar are shown to work very well for M = N2 (Fig. 6d) 

but they are somewhat less accurate for M = He (Fig. 6a). It may be of interest to develop bath-

specific coefficients for Eq. (1), but we do not pursue this here. 

 Estimating the collision parameters s, e, and a. In this section we summarize the use of N 

and Neff to estimate collision parameters. One can trivially compute s and e for hydrocarbons, 

alcohols, and hydroperoxides by simply counting the number of nonhydrogen atoms N and using 

the formulas given at the beginning of this section. We did not consider M = H2 or N2 for alcohols 

and hydroperoxides, but it is likely a good approximation to use assume their values of s and e are 

close to those for M = He or Ar, respectfully, if no better information is available. Similarly, values 

for M = Ar (or M = N2, if available) are likely suitable for describing M = Kr, O2, and CO with 

sufficient accuracy for many applications. Note also that the collision rates Z for alcohols and 

hydroperoxides are very similar to one another for a given value of N, and so, again in the absence 

of better information, it appears reasonable to apply these same formulas to other oxygenated 

classes of species. Finally, we note that when more accurate values of s and e are deemed 

necessary, one can compute them directly fairly readily using the “one-dimensional 

minimizations” approach [67] so long as not too many are needed. Higher-accuracy calculations 

of transport properties are also possible, although these typically require somewhat more 

computational effort [16,21]. 

 The direct computation of a requires a nontrivial amount of effort, and a major result from 

the present work is the strategy for using Neff to avoid this effort. As a demonstration, we consider 

2,2,3-trimethylbutane (TMB) + Ar at 1000 K, which was not included in any of the series in Table 

1. TMB (N = 7) has one tq rotor, two pt rotors, and three pq rotors, such that Eq. (1) evaluates to 
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Neff = 313. This value of Neff indicates that TMB’s collision properties should be intermediate of 

propane’s (α!(3) = 612 cm–1) and butane’s (α!(4) = 704 cm–1). Simply interpolating these values 

gives 643 cm-1, but as noted in Sec. 2 such a procedure does not properly account for changes in 

the collision rate with N. Instead, we evaluate Eq. (2) for Neff = 313 and N = 7 as follows. 

 For the denominator of Eq. (2), Z(N = 7), we could either simply adopt n-heptane’s 

Lennard–Jones parameters (s = 4.80 Å and e = 205 cm–1) and compute Z or else evaluate the 

expressions given at the beginning of this section (s = 4.83 Å and e = 215 cm–1). These two 

approaches result in collision rate constants Z that differ by just a few percent. To evaluate the 

numerator of Eq. (2), we need to interpolate the product Zα!!! for Neff = 313 . From trajectory 

calculations, we know that Zα!!!(3) = 315 and Zα!!!(4) = 383 for propane and butane + Ar at 1000 K, 

respectively (in both cases the unwieldy units are 109 cm3 molecule-1 s–1 cm–1). Linearly 

interpolating these numbers gives Zα!(Neff = 313) = 338, which, when divided by 109 and the collision 

rate constant Z(7) = 6.38 x 10–10 cm3 molecule–1 s–1, gives a » 529 cm–1.  

 The estimates obtained via this procedure (s = 4.83 Å, e = 215 cm–1, and a = 529 cm–1) 

are in very good agreement (< 6%) with the results of a direct calculations for this system (s = 

4.75 Å, e = 206 cm–1, and a = 560 ± 28 cm–1). If we had instead adopted heptane’s value of a for 

TMB, α!(7) = 797 cm–1, our estimate of a would have had an error of ~40%. 

 The use of Neff to estimate a relies on knowing Zα!!! for the corresponding normal (linear) 

series and for the bath gas and temperature of interest. The results calculated here for the normal 

alkane series + He, Ar, H2, and N2 and for the normal alcohol and hydroperoxides series + He and 

Ar are given as supporting information, along with analytic formulas fit to these data to aid in the 

evaluation of Eq. (2) for non-integer Neff. If no better information is available, it is likely a good 
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approximation to use the values of a estimated from these series for M = Ar or N2 to describe M 

= Kr, N2, O2, and CO, as these species often have similar energy transfer parameters. 

 

4. CONCLUSIONS 

 The computation of Lennard–Jones collision parameters s and e and the collision 

efficiency range parameter a was automated and carried out for 307 alkanes, alcohols, and 

hydroperoxides, the He, Ar, H2, and N2 baths, and at 300, 1000, and 2000 K. This data set was 

analyzed to develop simple rules for predicting s and e based on the type of unimolecular reactant, 

the number of nonhydrogen atoms N, and the bath gas. For estimating a, we demonstrated the 

utility of determining an effective number of heavy atoms Neff based on the numbers and types of 

internal rotors in the system.  

 The empirical hindering correction parameters that define Neff via Eq. (1) were derived and 

tested using a large data set for M = Ar at 1000 K. We demonstrated the excellent and good 

transferability of these parameters to other temperatures and bath gases, respectively. This 

transferability greatly increases the utility of the approach, which should be useful for the rapid 

estimation of transport parameters and collision efficiencies for large numbers of alcohols, 

hydroperoxides, and alkanes. This approach is likely readily extended without significant 

modification to the treatment of more classes of unimolecular reactants A, including unsaturated 

and radical species. The extension to more bath gases, including strong colliders such as M = H2O 

and CO2, may require further validation of the approach and perhaps specialized bath-specific 

parameterizations. 

 Physically, the “effective internal rotor” approach for determining Neff, while empirical, 

can be readily motivated by speculating that more strongly hindered rotors, such as those involving 
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tertiary C atoms or appearing in rings, are less efficient at promoting collisional energy transfer, 

on average, than the relatively unhindered rotors appearing in normal alkanes, alcohols, and 

hydroperoxides. Closely related explanations based on the size and shape of A, its rotational 

constants, its vibrational frequencies and in particular its number of low frequency vibrations, etc. 

could also be inferred from these results. It may be of interest to interrogate the results of the 

trajectories in more detail to further explore these relationships and to provide a more definitive 

motivation for Eq. (1), but we have not done so here. 
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Table 1. Series of hydrocarbons 
Series Drawing Ma Seriesb pp|ps|ss pt|st tt|tq|qq pq|sq ss,ring 
  n-alkanes 

 
12 N=1(1)8,10(2)16 X     

Singly branched  39       
  K-methyl- 

 

25 K=2(1)4,6,8;  
  N=2K(1)8,10(2)16 

X X    

  K-ethyl- 

 

14 K=3; N=7,8(2)16 
K=4; N=9,10(2)16 
K=6; N=13,14,16 

X X    

Doubly branched  44       
  2,K-dimethyl- 

 

22 K=3; N=6(1)8,10(2)16 
K=4; N=7,8,10(2)16 
K=6; N=9,10(2)16 
K=8; N=11,12(2)16 

X X X   

  K,K-dimethyl- 

 

22 K=2; N=5(1)8,10(2)16 
K=3; N=7,8,10(2)16 
K=4; N=9,10(2)16 
K=6; N=13,14,16 

X   X  

Highly branched  16       
  “half   
  methylated”   

4c N = 7(3)16  X    

  “methylated” 

 

6c N = 6(2)16  X X   

  “dimethylated” 

 

3 N = 8(3)14   X X  

  “‘iso’ fuels” 

 

3 N = 8,12,16  X  X  

Alkane rings  16       
  cyclopentyl- 

 
7 N = 6(1)8,10(2)16 X X   X 

  cyclohexyl- 

 

6 N = 7,8(2)16 X X   X 

  polycyclo- 
 

3 N = 6,10,14 X X   X 

Aromatic rings  16       
  cyclopenta- 
  dienyl- 

 

7 N = 6(1)8,10(2)16 X X   X 

  phenyl- 
 

6 N = 7,8(2)16 X X   X 

  anthracenes 

 

3 N = 6,10,14 X X   X 

aM is the number of species considered in each group. bThe notation X(Y)Z indicates a list from X 
to Z in steps of Y. cThe first member in the series also appears in a dimethyl series. 
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Table 2. Series of alcohols and hydroperoxides 
Series Drawing Ma Seriesb pp|ps|ss pt|st tt|tq|qq pq|sq CO|O 
Alcohols  84       
  n-alcohols 

 
11 N=2(1)9,11(2)15 X    X 

  K-ols 

 

24 K=2(1)4;  
  N=2K(1)9,11(2)15 
K=6;N=12,13,15 

X X   X 

  K,K-diols 

 

23 K=2(1)4;  
  N=2K+1(1)10,12(2)16 
K=6;N=13,14,16 

X   X X 

  K-methyl-K-ols 

 

14 K=2,3; 
  N=2K+1(1)9,11(2)15 

X X X X X 

  K-methyl-L-ols 

 

12 K=2;L=3;N=7(1)9,11(2)15 
K=3;L=2;N=7(1)9,11(2)15 

X X X X X 

Hydroeroxides  82       
  n-hydroperoxides 

 
10 N=3(1)10,12,14 X    X 

  K-peroxy- 

 

23 K=2;N=5(1)10,12(2)16 
K=3;N=7(1)9,12(2)16 
K=4;N=9,10(2)16 
K=6;N=13,14,16 

X X   X 

  K,K-diperoxy- 
 

23 K=2;N=7(1)14,16 
K=3;N=9(1)14,16 
K=4;N=11(1)14,16 
K=6;N=15,16 

X   X X 

  K-methyl-K- 
  peroxy-  

13 K=2; N=6(1)10,12,14 
K=3; N=8,9,10(2)14 

X X X X X 

  K-methyl-L- 
  peroxy- 

 

13 K=2;L=3;N=7(1)9,10(2)16 
K=3;L=2;N=8,9,10(2)16 

X X X X X 

aM is the number of species considered in each group. bThe notation X(Y)Z indicates a list from X 
to Z in steps of Y. 
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Figure 1 

 

Fig. 1. Computed Lennard–Jones collision rate constants Z at 1000 K and M = Ar for several 

hydrocarbons (x), alcohols (diamonds), and hydroperoxides (triangles) and shown as a 

function of the number of heavy (nonhydrogen) atoms N. Solid lines show the results of 

the analytic expressions for s and e given in the text. 
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Figure 2 

 

Fig. 2. The deactivating moment of the energy transfer rate constant Za multiplied by the number 

density of the bath gas at 1 Torr n1 for the series of n-alkanes from methane (N = 1) to 

hexadecane (N = 16) computed at 1000 K (n1 = 9.7 x 1015 1/cm3). Results for four 

intramolecular potential energy surfaces are shown. The trajectory ensemble sizes used 

here have 5% 2-sigma statistical uncertainties, as indicated for just one of the curves to 

reduce clutter. 
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Figure 3 

 

Fig. 3.  Zn1a for several series of (a,c) singly and doubly branched alkanes and (b,d) cyclic and 

highly branched alkanes and alkenes at 1000 K. The thick black line shows the results for 

the normal alkane series. Results are shown in (a,b) as a function of the number of heavy 

atoms N and again in (c,d) as a function of the effective number of heavy atoms Neff. 
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Figure 4 

 

Fig. 4.  Zn1a for several series of (a,c) alcohols and (b,d) hydroperoxides at 1000 K. Results are 

shown in (a,b) as a function of the number of heavy atoms N and again in (c,d) as a function 

of the effective number of heavy atoms Neff. 
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Fig. 5.  Zn1a at 300 K (n1 = 3.2 x 1016 1/cm3) for (a,c) five series of hydrocarbons and (b,d) eight 

series of alcohols (solid lines) and hydroperoxides (dashed lines). Results are shown in 

(a,b) as a function of the number of heavy atoms N and again in (c,d) as a function of the 

effective number of heavy atoms Neff. 
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Figure 6 

 

Fig. 6.  Zn1a for five series of hydrocarbons and (a,c) M = He and (b,d) M = N2 at 1000 K. Results 

are shown in (a,b) as a function of the number of heavy atoms N and again in (c,d) as a 

function of the effective number of heavy atoms Neff. 

 


